Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier-Stokes Equation

نویسندگان

  • Jian-Guo Liu
  • Wei-Cheng Wang
چکیده

We consider the vorticity-stream formulation of axisymmetric incompressible flows and its equivalence with the primitive formulation. It is shown that, to characterize the regularity of a divergence free axisymmetric vector field in terms of the swirling components, an extra set of pole condition is necessary to give a full description of the regularity. In addition, smooth solutions up to the axis of rotation gives rise to smooth solutions of primitive formulation in the case of Navier-Stokes equations, but not the Euler equations. We also establish proper weak formulations and show its equivalence to Leray’s solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the regularity of the axisymmetric solutions of the Navier-Stokes equations

Weobtain improved regularity criteria for the axisymmetricweak solutions of the three dimensional Navier-Stokes equations with nonzero swirl. In particular we prove that the integrability of single component of vorticity or velocity fields, in terms of norms with zero scaling dimension give sufficient conditions for the regularity of weak solutions. To obtain these criteria we derive new a prio...

متن کامل

On the Global Regularity of Axisymmetric Navier-stokes-boussinesq System

In this paper we prove a global well-posedness result for tridimensional Navier-Stokes-Boussinesq system with axisymmetric initial data. This system couples Navier-Stokes equations with a transport equation governing the density.

متن کامل

Trace Theorems for Three-dimensional, Time-dependent Solenoidal Vector Fields and Their Applications

We study trace theorems for three-dimensional, time-dependent solenoidal vector fields. The interior function spaces we consider are natural for solving unsteady boundary value problems for the Navier-Stokes system and other systems of partial differential equations. We describe the space of restrictions of such vector fields to the boundary of the space-time cylinder and construct extension op...

متن کامل

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data

In this paper, we study the 3D axisymmetric Navier-Stokes Equations with swirl. We prove the global regularity of the 3D Navier-Stokes equations for a family of large anisotropic initial data. Moreover, we obtain a global bound of the solution in terms of its initial data in some Lp norm. Our results also reveal some interesting dynamic growth behavior of the solution due to the interaction bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009